L2范数归一化概念和优势

  • 时间:
  • 浏览:4
  • 来源:三分时时彩_三分时时彩技巧_三分时时彩平台

       归一化是两种数理统计中常用的数据预出理 手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间肯能将数据向量的某个范数映射为1,归一化好处有另另五个:

       (1) 消除数据单位的影响:其一能只有将有单位的数据转为无单位的标准数据,如成年人的身高80-80cm、成年人体重80-90Kg,身高的单位是厘米而体重的单位是千克,不同维度的数据单位不一样,造成原始数据只有直接代入机器学习中进行出理 ,就说有有哪些数据经过特定土办法统一都映射到(0,1)两种区间,另另另五个 所有数据的取值范围需用同另另五个区间里的。

       (2) 可提淬硬层 学习模型收敛速率 : 肯能不进行归一化出理 ,假设淬硬层 学习模型接受的输入向量只有另另五个维度x1和x2,其中X1取值为0-800,x2取值为0-3。另另另五个 数据在进行梯度下降计算时梯度时对应另另五个很扁的椭圆形,很容易在垂直等高线的方向上走絮状的之字形路线,是的迭代计算量大且迭代的次数多,造成淬硬层 学习模型收敛慢。

       L2范数归一化出理 操作是对向量X的每个维度数据x1, x2, …, xn都除以||x||2得到另另五个新向量,即

\[{{\bf{X}}_2} = \left( {\frac{{{x_1}}}{{{{\left\| {\bf{x}} \right\|}_2}}},\frac{{{x_2}}}{{{{\left\| {\bf{x}} \right\|}_2}}}, \cdots ,\frac{{{x_n}}}{{{{\left\| {\bf{x}} \right\|}_2}}}} \right) = \left( {\frac{{{x_1}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }},\frac{{{x_2}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}, \cdots ,\frac{{{x_n}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}} \right)\]

       若向量A = (2, 3, 6),易得向量X的L2范数为

\[{\left\| {\bf{A}} \right\|_2} = \sqrt {{2^2} + {3^2} + {6^2}} = \sqrt {4 + 9 + 36} = \sqrt {49} = 7\]

       就说向量A的L2范数归一化后得到向量为

\[{{\bf{A}}_2} = \left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right)\]



图1 L2范数能只有看作是向量的长度

       L2范数有一大优势:经过L2范数归一化后,一组向量的欧式距离和它们的余弦你是什么度能只有等价

       另另五个向量X经过L2范数归一化得到向量X2,一并另另另五个 向量Y经过L2范数归一化得到向量Y2。此时X2和Y2的欧式距离和余弦你是什么度是等价的,下面先给出严格的数学证明。

       假设向量X = (x1, x2, …, xn),向量Y = (y1, y2, …, yn), X2和Y2的欧式距离是

\[\begin{array}{l} D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + {{\left( {\frac{{{x_2}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_2}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + \cdots + {{\left( {\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right){{\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^T}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{\left\| {\bf{X}} \right\|_2^2}} - \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} - \frac{{{\bf{Y}}{{\bf{X}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{\left\| {\bf{Y}} \right\|_2^2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{{\bf{X}}{{\bf{X}}^T}}} - \frac{{2{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{{\bf{Y}}{{\bf{Y}}^T}}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {2 - 2\frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}} \\ \end{array}\]

       X2和Y2的余弦你是什么度为

\[\begin{array}{l} Sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }}\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }} \cdots {\rm{ + }}\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {{\left( {\frac{{{x_{\rm{n}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}} \cdot \sqrt {{{\left( {\frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {\rm{ + }}{{\left( {\frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{\left\| {\bf{X}} \right\|_2^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{\left\| {\bf{Y}} \right\|_2^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{x_1^2 + x_2^2 + \cdots + x_n^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{y_1^2 + y_2^2 + \cdots y_n^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \end{array}\]        结合另另五个表达式易得



\[D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       即L2范数归一化出理 后另另五个向量欧式距离等于2减去2倍余弦你是什么度的算术平方根。肯能你被里边令人昏头转向的数学公式搞晕,而不看一遍语句,这里还有两种仅需用中学知识的更简单证明土办法证明两者的等价性:

       假设一组二维数据,设经过L2范数归一化后向量X2 为 (p1, p2),向量Y2 为 (q1, q2)。向量X2是原点(0,0) 指向点P(p1,p2)的有向线段,向量Y2是原点(0,0)指向点Q(q1, q2)的有向线段。易得

       X2和Y2的欧式距离为线段PQ长度

       X2和Y2的余弦你是什么度为∠POQ的余弦值

       根据余弦定理易得

\[\cos \angle POQ = \frac{{O{P^2} + O{Q^2} - P{Q^2}}}{{2 \cdot OP \cdot OQ}}\]

       肯能L2范数归一化向量的长度需用1,肯能L2范数归一化向量的长度需用1,只有 向量对应的点肯定需用单位圆上,就说OP=OQ=1



图2 L2范数归一化后向量对应的点需用单位圆上

       许多

\[\cos \angle POQ = \frac{{{1^2} + {1^2} - P{Q^2}}}{2} = \frac{{2 - P{Q^2}}}{2}\]

       即

\[sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{2 - D{{\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)}^2}}}{2} \Rightarrow D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       许多经L2范数归一化后,一组向量的欧式距离和它们的余弦你是什么度可等价。两种大优势是当你算得一组经过L2范数归一化后的向量的欧式距离后,又想计算它们的余弦你是什么度,能只有根据公式在O(1)时间内直接计算得到;反过来也一样。

       另外,在许多机器学习出理 包中,只有欧式距离计算只有 余弦你是什么度计算,如Sklearn的Kmeans聚类包,两种包只有出理 欧式距离计算的数据聚类。

       而在NLP领域,许多词语或文档的你是什么度定义为数据向量的余弦你是什么度,肯能直接调用Sklearn的Kmeans聚类包则只有进行聚类出理 。许多需用将词语对象的词向量肯能文档对应的文本向量进行L2范数归一化出理 。肯能在L2范数归一化出理 后的欧式距离和余弦你是什么度是等价的,就说此时能只有放心大胆用Sklearn的Kmeans进行聚类出理 。